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1 Fundamental Groups of Product and Orbit Spaces

1.1 Fundamental groups of product spaces

Last time, we stated the following theorem.

Theorem 1.1. If X,Y are topological spaces, then π1(X × Y, (x0, y0)) ∼= π1(X,x0) ×
π1(Y, y0).

Proof. We have continuous maps p1 : X × Y → X and p2 : X × Y → Y . Define ψ :
π1(X × Y, (x0, y0))→ π1(X,x0)× π1(Y, y0) as

[α] 7→ ((p1)∗([α]), (p2)∗([α])) = ([p1 ◦ α], [p2 ◦ α]).

Injectivity: If p1 ◦ α 'F ex0 rel {0, 1} (where ex0 is the constant path at x0) and
p1 ◦ α 'F ex0 rel {0, 1}, then α '(F,G) e(x0,y0) rel {0, 1}. So if ψ([α]) = (e, e), then [α] = e.
So ψ is injective.

Surjectivity: If [β] ∈ π1(X,x0) and [γ ∈ π1(Y, y0), let α : [0, 1] → X × Y be α(t) =
(β(t), γ(t)) for t ∈ [0, 1]. Then ψ([α]) = ([β], [γ]). Hence, ψ is surjective, so ψ is an
isomorphism.

1.2 Orbit spaces

1.2.1 Definitions and examples of orbit spaces

Let G be a group. (G can be thought of as a topological group with the discrete topology)

Definition 1.1. A group G acts on a space X if for all g ∈ G, g defines a homeomorphism
fg : X → X such that

1. For the identity e ∈ G, fe = idX .

2. ∀g, h ∈ G, fgh = fh ◦ fg.
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G acts properly discontinuously (called “niecly”) on X if G acts on X, and ∀x ∈ X and
g ∈ G with g 6= e, there exists an open neighborhood U of x such that U ∩ fg(U) = ∅.

The “nice” condition implies that if g 6= e, then fg(x) 6= x for each x ∈ X; i.e. there
are no fixed points.

Definition 1.2. Define an identification space X/G by choosing a partition P on X such
that x, y are in the same subset in P iff there exists some g ∈ G such that fg(x) = y. This
identification space is called an orbit space.

Example 1.1. Let X = R, and let Z act on R by fn(x) = x+n. The orbit space R/Z ∼= S1,
with the homeomorphism [x] 7→ e2πix.

Example 1.2. Let X = R2, and let Z2 act on R by f(m,n)(x, y) = (x + m, y + n). The
orbit space R2/Z2 ∼= T 2, the torus.

This is because every (x, y) ∈ R2 is in the same equivalence class in the partition as
some (x′, y′) ∈ [0, 1] × [0, 1]. If (x, y) is in the box bounded by x = m, x = m + 1, y = n,
and y = n+ 1, then (x′ + y′) = f(−m,−n)(x, y) is in the desired unit square.

If we look at [0, 1] × [0, 1], the top and bottom edges get identified together by f(0,1),
and the left and right edges get identified together by f(1,0). Nothing else gets identified
(check this yourself), so we do indeed get the torus T 2.

Example 1.3. More generally, Rn/Zn ∼= Tn. Morally, this is because the action of Zn is
the product of n actions, each acting on one component of Rn

Example 1.4. The Möbius strip is homeomorphic to (R × [0, 1])/Z, where the action is
f1(x, y) = (x+ 1, 1− y) (and fn = f1 ◦ · · · ◦ f1 n times).

Example 1.5. The Klein bottle is homeomorphic to R2/G, where G = 〈r, u | rur = u〉,
and the action is fr(x, y) = (x+ 1, y), and fu(x, y) = (1− x, y + 1). The group elements r
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and u mean moving over right one square or up on square.

Example 1.6. Projective space RPn ∼= Sn/(Z/2Z), where f1(x) = −x.

Example 1.7. The Lens space1 L(p, q) for p, q relatively prime and p > q ≥ 1 is S3/(Z/pZ),
where we think of S3 as the unit sphere in R4 = C2, and f1(z1, z2) = (ei2π/pz1, e

i2πq/pz2).
Note that e2πi/2 = −1, so L(2, 1) ∼= RP 2, so this generalizes projective space in some

sense.

1.2.2 Fundamental groups of orbit spaces

Recall that simply connected means that π1(X) ∼= 1. Orbit spaces constructed from simply
connected spaces have a lot of structure.

Theorem 1.2. If G acts properly discontinuously (or “nicely”) on a space X, and X is
simply connected and path-connected, then π1(X/G) ∼= G.

Proof. Let p ∈ X, and let π : X → X/G be the projection map (from the definition of the
identification space). Let q = π(p). If γ : [0, 1] → X is a path from p to fg(p) (for some
g ∈ G), then (π ◦ γ)(1) = π(γ(1)) = π(fg(p)) = π(p) = q. So [π ◦ γ] ∈ π1(X/G, q).

X is simply connected, so any two such paths γ, γ′ are homotopic rel {0, 1}. So all we
care about from γ is γ(0) and γ(1). Then define φ : G→ π1(X/G, q) sending g 7→ [π ◦ γg],
where γg is a path in X from p to fg(p).

φ is a homomorphism: This is proved exactly like in the case R→ S1.
φ is surjective and injective: This is just like R → S1, but let’s give a little more

description. Use:

1. Path lifting lemma: If σ is a path in X/G with σ(0) = q, there exists a unique path
σ̃ in X such that σ̃(0) = p and π ◦ σ̃ = σ.

2. Homotopy lifting lemma: If F is a homotopy rel {0, 1} of paths σ, σ′ in X/G from q
to q, then there exists a unique homotopy F̃ in X from the lifts σ̃ to σ̃′ (coming from
path lifting) such that π ◦ F̃ = F .

1Professor Conway thinks about these in his research.
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The truth of these lemmas follows from the fact that the action is “nice.”

Corollary 1.1. π1(RPn) ∼= Z/2Z for n ≥ 2.

Corollary 1.2. π1(Möbius strip) ∼= Z.

Corollary 1.3. π1(Klein bottle) ∼= 〈r, u | rur = u〉.

Corollary 1.4. π1(L(p, q)) ∼= Z/pZ.
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