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1 Fundamental Groups of Product and Orbit Spaces

1.1 Fundamental groups of product spaces

Last time, we stated the following theorem.

Theorem 1.1. If X, Y are topological spaces, then w1 (X X Y, (xo,y0)) = m(X,x0) X
7I'1<Y, Z/O)

Proof. We have continuous maps p; : X XY — X and ps : X XY — Y. Define v :
(X X Y, (%0, 0)) — m (X, 20) X m1(Y,90) as

[a] = ((p1)«([e]); (p2)«([a])) = ([p1 © o], [p2 © a]).

Injectivity: If p; o @ ~p ey, rel {0,1} (where ey, is the constant path at xp) and
p1oap eg rel {0,1}, then o (5 ) €(z,4,) 1€l {0,1}. So if Y([a]) = (e, e), then [a] = e.
So v is injective.

Surjectivity: If [8] € m1(X,z0) and [y € m1(Y,90), let a : [0,1] = X X Y be a(t) =
(B(t),~(t)) for t € [0,1]. Then ¢([a]) = ([8],[7]). Hence, ¢ is surjective, so ¢ is an
isomorphism. O
1.2 Orbit spaces

1.2.1 Definitions and examples of orbit spaces

Let G be a group. (G can be thought of as a topological group with the discrete topology)

Definition 1.1. A group G acts on a space X if for all g € G, g defines a homeomorphism
fg + X — X such that

1. For the identity e € G, f. = idx.

2' vgahe G7 fgh:fhofg~



G acts properly discontinuously (called “niecly”) on X if G acts on X, and Vz € X and
g € G with g # e, there exists an open neighborhood U of = such that U N f,(U) = @.

The “nice” condition implies that if g # e, then fy(x) # x for each x € X; i.e. there
are no fixed points.

Definition 1.2. Define an identification space X/G by choosing a partition P on X such
that x,y are in the same subset in P iff there exists some g € G such that f,(x) =y. This
identification space is called an orbit space.

Example 1.1. Let X = R, and let Z act on R by f,,(z) = x+n. The orbit space R/Z = S!,
with the homeomorphism [z] s ™%,

Example 1.2. Let X = R?, and let Z? act on R by f,n)(2,y) = (x +m,y +n). The
orbit space R?/Z? = T2, the torus.

This is because every (z,y) € R? is in the same equivalence class in the partition as
some (2/,y') € [0,1] x [0,1]. If (z,y) is in the box bounded by x = m, z =m+1, y = n,
and y = n + 1, then (2’ +y') = f(_y,—n)(x,y) is in the desired unit square.

If we look at [0,1] x [0, 1], the top and bottom edges get identified together by f(o 1),
and the left and right edges get identified together by f(; ). Nothing else gets identified
(check this yourself), so we do indeed get the torus 7.

Example 1.3. More generally, R”/Z" = T™. Morally, this is because the action of Z" is
the product of n actions, each acting on one component of R

Example 1.4. The Mébius strip is homeomorphic to (R x [0,1])/Z, where the action is
filz,y) = (x+ 1,1 —y) (and f, = f1o--- o fi n times).

Example 1.5. The Klein bottle is homeomorphic to R?/G, where G' = (r,u | rur = u),
and the action is f,(z,y) = (x +1,y), and fu(x,y) = (1 —x,y + 1). The group elements r



and u mean moving over right one square or up on square.

Example 1.6. Projective space RP" = S"/(Z/2Z), where fi(z) = —x.

Example 1.7. The Lens space' L(p, q) for p, q relatively prime and p > q > 1is S®/(Z/pZ),
where we think of S as the unit sphere in R* = C2, and fi(z1,22) = (eizﬂ/ Pz, ei2ma/ Pz9).

Note that €272 = —1, so L(2,1) =2 RP?, so this generalizes projective space in some
sense.

1.2.2 Fundamental groups of orbit spaces

Recall that simply connected means that 71 (X) 2 1. Orbit spaces constructed from simply
connected spaces have a lot of structure.

Theorem 1.2. If G acts properly discontinuously (or “nicely”) on a space X, and X 1is
simply connected and path-connected, then m(X/G) = G.

Proof. Let p € X, and let m : X — X/G be the projection map (from the definition of the
identification space). Let ¢ = w(p). If v : [0,1] = X is a path from p to f4(p) (for some
g € G), then (wo)(1) = w(y(1)) = 7(fo(p)) = 7(p) = ¢ So [roq] € m(X/G, q).

X is simply connected, so any two such paths ,~" are homotopic rel {0,1}. So all we
care about from 7 is v(0) and y(1). Then define ¢ : G — 71 (X/G, q) sending g — [7 0 v,],
where 7, is a path in X from p to f4(p).

¢ is a homomorphism: This is proved exactly like in the case R — S*.

¢ is surjective and injective: This is just like R — S', but let’s give a little more
description. Use:

1. Path lifting lemma: If ¢ is a path in X/G with ¢(0) = ¢, there exists a unique path
¢ in X such that 6(0) =p and 7106 =o0.

2. Homotopy lifting lemma: If F is a homotopy rel {0,1} of paths o, o' in X/G from ¢
to ¢, then there exists a unique homotopy F in X from the lifts 7 to &' (coming from
path lifting) such that 7o F' = F.

'Professor Conway thinks about these in his research.



The truth of these lemmas follows from the fact that the action is “nice.”
Corollary 1.1. m(RP™) 2 Z/27Z for n > 2.
Corollary 1.2. 71 (Mébius strip) = Z.

Corollary 1.3. w1 (Klein bottle) = (r,u | rur = u).
(

Corollary 1.4. 71(L(p,q)) = Z/pZ.
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